ON THE EXPONENTIAL SUM WITH THE SUM OF DIGITS OF HEREDITARY BASE b NOTATION
نویسنده
چکیده
Let b 2 be an integer and wb(n) be the sum of digits of the nonnegative integer n written in hereditary base b notation. We give optimal upper bounds for the exponential sum PN 1 n=0 exp(2⇡iwb(n)t), where t is a real number. In particular, our results imply that for each positive integer m the sequence {wb(n)}n=0 is uniformly distributed modulo m; and that for each irrational real ↵ the sequence {wb(n)↵}n=1 is uniformly distributed modulo 1.
منابع مشابه
Design and Synthesis of High Speed Low Power Signed Digit Adders
Signed digit (SD) number systems provide the possibility of constant-time addition, where inter-digit carry propagation is eliminated. Such carry-free addition is primarily a three-step process; adding the equally weighted SDs to form the primary sum digits, decomposing the latter to interim sum digits and transfer digits, which commonly belong to {–1, 0, 1}, and finally adding the tra...
متن کاملMultiplicative Character Sums with the Sum of g-ary Digits Function
We establish upper bounds for multiplicative character sums with the function σg(n) which computes the sum of the digits of n in a fixed base g ≥ 2. Our results may be viewed as analogues of some previously known results for exponential sums with sum of g-ary digits function. MSC Numbers: 11L40, 11A63.
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملWaring’s Problem Restricted by a System of Sum of Digits Congruences
The aim of the present paper is to generalize earlier work by Thuswaldner and Tichy on Waring’s Problem with digital restrictions to systems of digital restrictions. Let sq(n) be the q-adic sum of digits function and let d, s, al, ml, ql ∈ N. Then for s > d ( log d+ log log d+O(1) ) there exists N0 ∈ N such that each integer N ≥ N0 has a representation of the form N = x 1 + · · ·+ xds where sql...
متن کاملThe sum of digits of primes in Z[i]
We study the distribution of the complex sum-of-digits function sq with basis q = −a ± i, a ∈ Z+ for Gaussian primes p. Inspired by a recent result of Mauduit and Rivat [16] for the real sum-of-digits function, we here get uniform distribution modulo 1 of the sequence (αsq(p)) provided α ∈ R \Q and q is prime with a ≥ 28. We also determine the order of magnitude of the number of Gaussian primes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014